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SUMMARY

The paper reconsiders the existence of the BLUEs under a randomization model for
the randomized block design, questioned by Kaiser (1989; 7. Statist. Plann. Inference
22, 63-69). It is shown how two different randomization models for this design imply
the existence, under certain conditions, of the BLUEs of the usual linear parametric
functions of interest. The role of the double randomization, within and between
blocks, is indicated. Finally, the reason for the negative conclusion drawn in Kaiser’s
paper is discussed.
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1. Introduction

In a paper by Kaiser (1989) it has been claimed that under a simple randomization
model for the randomized block design the usual estimator of a contrast of treatment
parameters is not the best linear unbiased and, moreover, that no best linear unbiased
estimator (BLUE) exists for any such contrast. The aim of the present paper is to
reconsider the problem of existence of the BLUEs, under two different randomization
models, and to discuss the negative conclusion drawn by Kaiser (1989).

When describing the randomized block design, authors of the classical experi-
mental design books pointed out the necessity of a random assignment of treatments
to units (plots) within blocks (see, e.g., Fisher, 1935, Section 22; Kempthorne, 1952,
Section 9.1; Cochran and Cox, 1957, Section 4.2; Cox, 1958, Chapter 5; Scheffé, 1959,
Section 9.1; Finney, 1960, Section 3.1). However, in formulating mathematical models

! This paper was delivered as a lecture at the XXXVII Session of the Polish Bio-
metric Society, Poznati, February 2-3, 1996.
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for the analysis of experimental results obtained under the randomized block design,
the role of randomization has not been understood in the same way by various au-
‘thors. In most of the literature, the models discussed are based on the assumption that
the residuals, caused by the apparent lack of homogeneity of experimental units, are
uncorrelated and distributed around zero with equal variance. Such a model, called
the assumed linear model, does not appreciably take into account the randomization
implemented in designing and carrying out the experiment. Different models have
been obtained when really recognizing, in the process of mathematical derivations,
the randomization techniques employed. Among these more realistic approaches to
modelling randomized experiments, two lines are of particular interest. One, which is
confined to the intra-block randomization, stems back to the early works by Neyman
(1923, 1935) and has been continued by Kempthorne (1952, 1955) and his followers
(see, e.g., Zyskind, 1975). A model derived from this intra-block randomization ap-
proach and its implications for estimating linear parametric functions are considered
in Section 2. Another line of formulating a randomization model was initiated by
Nelder (1954), under some influence of Anscombe (1948), and extended by Nelder
(1965a). A general exposition of this approach has been given by Bailey (1981). For
the randomized block design case, an essential feature of this approach is that not
only the intra-block but also the inter-block randomization is taken into account in
formulating the model. A model so derived and implications following from it for
linear parametric estimation are subjects of Section 3. Results presented in Sections
2 and 3 are in contradiction to the conclusion of Kaiser (1989). The reasons for this
are discussed in Section 4. In an appendix (Section 5) a useful criterion for assessing
whether a linear statistic is or is not the BLUE of its expectation is recalled.

2. A model derived from the intra-block randomization

As in the paper by Kaiser (1989), the model considered here is for the analysis of
results of an experiment in the randomized (complete) block design with v treatments
(or varieties) compared in b blocks of v units each. Under the usual unit-treatment
additivity assumption, also adopted in Kaiser’s paper, it is permissible to represent
the conceptual true response to treatment j on unit & in block % by i + 7;, where
pix and 7; are some unknown parameters. It may also be justified to add a technical
error component, as some authors do (e.g., Neyman, 1935; Kempthorne, 1952, pp. 132
and 151; Scheflé, 1959, p.293), but this will be avoided here for purely comparative
reasons, to keep to the model used by Kaiser (1989, Section 2). A basic assumption in
formulating the model for the observed responses is that the treatments are assigned
to units (plots) at random in each block, independently from block to block. It
follows from the generally accepted rule, described, e.g., by Finney (1960, p.23):
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Before randomization

Block 1 Block 2 Block 3 Block 4 Block 5

After randomization
Block 1 Block 2 Block 3 Block 4 Block 5

sl4lelt) 431|221 4|3||2]l2|4|sz1|3]|2]|4

Fig.1. Randomization for an experiment with four treatments and five blocks. Here
the unit labels are randomly permuted within blocks taken in the order given by their
original labels.

"The procedure for any block is to select one plot at random for the first treatment,
another at random for the second treatment, and so on, and to use a new random
order in each block.” This rule can be illustrated as shown in Figure 1.

Under the above assumptions of additivity and intra-block randomization, let Yij
denote the observed response to treatment j in block ¢. To use the matrix notation,
let the observations be represented by

y= [yn, oy Yloy ey Yo, ---,ybu]',

and the parameters by

H= [#117---,ﬂlv:---,#blw--,ﬂbu]/ and T= [7'1,...,7'1,]’.

Then the model can be written as

y=(LoL)T+p.p (2.1)

[formula (2.1) of Kaiser, 1989], where p,. is a permutation matrix determined by the
randomization (hence the subscript). Let the design random variables &7, (introduced
by Kempthorne, 1952, Section 8.2) be defined as

. 1 if a unit in block ¢ originally labelled k receives by
= the randomization the label j (to get the treatment j),
0 otherwise,

for j,k=1,...,v and i = 1,...,b. Then the matrix p, can be written explicitly as
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pr =diag [Ay:...: 4], where A; = [6]

(i=1,...,v, for rows, and k = 1, ..., v, for columns of A 1= Loeos 8 ).
From the known distribution properties of the variables 87, (see, e.g., Scheffé,

1959, Section 9.1), the random vector y of the model (2.1) can be shown to have the

properties

and

Cov(y) = diaglofr,, ..., 08, ® (I —v11,1)), 2
U1 U,

where Ky = [p1., -, )" and

ofi=(v—1)71 ‘Z(,Uik — pi)?, (2.4)

k=1

with pg; =v71 S ey Mik, fori=1,...,b. (This dot notation for averaging will be used
throughout the paper.)

Now it will be interesting to see whether the model (2.1) gives rise to the same
BLUEs as those obtainable under the usual assumed linear model in which the unit
errors are uncorrelated and identically distributed with zero mean and constant vari-
ance [i.e. the model (2.2) of Kaiser, 1989]. Note that, with regard to this, a candidate
for a BLUE is a linear function »7*(1] ® ¢')y , where ¢ is a v x 1 vector of some
constant coefficients. Its expectation is ¢/T +c/1,u . , where y = b’ll;)p,(,). So, the
function b1 (1} ® ¢’)y is unbiased for ¢/7 + ¢/1,4_. But is it the BLUE? To answer
this question the well known criterion of Zyskind (1967, Theorem 3), recalled in the
Appendix, can be applied. According to it, a necessary and sufficient condition for
b~1(1, ® c)y to be the BLUE of its expectation, is the equality

(L, — P)Cov(y)(1, ® ¢) =0, (2.5)

where P is the orthogonal projector on the column space of the matrix [1, ® I, :
I, ®1,]. Since

Iy — P =1, -0 '1,1))® (I, —v~11,1)),
and Cov(y) is of the form (2.3), the condition (2.5) can equivalently be written as

[0(21,1 - 0(2],47'” U?],b - 0[21,.], ® (I, - v~11v1::)c =0, (2.6)

where

b
0%, =071y o (27)
=1
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Evidently, (2.6) is satisfied if and only if either ¢ is proportional to the vector 1, or
the equality
oty =-.=0fy  (=0b) (2.8)
holds.
Thus, it has been shown that

(i) the parametric function 7 44, , where 7 = v~ 11/ 1, i.e. the overall true response
averaged over the v treatments, has the BLUE in the form

T e, = (vb) M,y

i.e. equal to the general observed mean;
(ii) a parametric function ¢'r, where ¢'1, = 0, i.e. a contrast of treatment parame-
ters, has the BLUE in the form

cr =b (1, ®c)y (2.9)

if and only if the equality (2.8) holds, i.e., the unit error variances (2.4) are
constant for all the b blocks.

Certainly, the condition required in (ii) is a well known result. Zyskind (1975,
p.654), e.g., writes: ”In the case of the complete randomized block design homogeneity
of the various intrablock variances is required”.

3. A model derived from the intra-block and inter-block
randomization

Suppose that, in addition to the assumptions made in Section 2, it is assumed that not
only the units are randomized within the blocks but also the blocks are independently
randomized between themselves. This assumption follows from the rule given by
Nelder (1954, Section 2): ”choose a block at random and reorder its members at
random (...); repeat the procedure with one of the remaining blocks chosen at random
(...), and so on”. This rule can be illustrated as shown in Figure 2. Note the difference
in the randomizations between Figures 1 and 2.

Following, as before, the unit-treatment additivity approach (also accepted by
Nelder, 1965b, Section 3) and using the same definitions of the vectors y, u, and 7,
as in Section 2, one is justified in writing the model in the form

y=1, L)+ 14, (3.1)

where the permutation matrix I, determined by the randomization differs now from
P, in (2.1) by the fact that not only the labels of units within blocks but also the
labels of blocks are randomized. Using, in accordance with this, additional design
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Before randomization
Block 1 Block 2 Block 3 Block 4 Block 5

After randomization
Block 3 Block 1 Block 4 Block 4 Block 2

2 1433421132412\ 4]804]3]|1]2

Fig.2. Randomization for an experiment with four treatments and five blocks. Here
the unit labels are randomly permuted within blocks taken in the order given by their
randomly permuted labels 3, 1, 5, 4, 2. (For the sake of comparison, it is assumed
that the random permutations within blocks have been obtained exactly as in Fig. 1.)

random variables v , defined as

1 if a block originally labelled i receives
’yf‘ = by the randomization the label h,
0 otherwise,

for h,i =1,...,b, the matrix II, can be written explicitly as
I, = (F®L)p,, where I = [y}

(h=1,...,b, for rows, and ¢ = 1,...,b, for columns of T).
Due to the distribution properties of the variables fy{‘, similar to those of & s ,
the random vector y of the model (3.1) has the properties

E(y) = (1 ® )T + Lpys.. (3.2)

and
Cov(y) = 0%(I, — b '1,1}) ® 1,1, + 021, ® (I, — v '1,1), (3.3)

where o, = of, , i.e. the average defined in (2.7).
The results (3.2) and (3.3) coincide with those given by Nelder (1954), since his
constants 02, p; and py can be defined as follows:
, b—1

- -1 1 1
o° = —b—o'%+3)—];g'[2], P11 = (—-b—-—U%—;U?]> /(72 and p2:———50%/02.
v
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Now, it is interesting to establish for which linear functions of the expectation vec-
tor (3.2) the BLUESs exist. Applying the criterion of Zyskind (1967) (see Appendix),
a necessary and sufficient condition for a linear function w'y to be the BLUE of
E(w'y) =w][1,® I,)7T + 1, 4..] can be found. It is of the form

[(To — 07 '1,1}) ® L][0% (T — b7 1151, ® 1,1, + 031, ® (I, — v~ 11,1))]w = 0,
and is satisfied for any values of 0% and 0% if and only if the equalities
(I —-b"'1,1))®1,1lw=0

and

(@ —57'1,1}) ®L,]w =0

hold simultaneously. Evidently, this is satisfied if and only if the vector w belongs to
the column space of the matrix (1, ® I,).

_Thus, for any v X 1 vector ¢ and any scalar s, the function (s1; ® ¢’)y is the
BLUE of its expectation, sb(c'T + ¢'1, 4. ). In particular, taking s = b=, the function
(0711, ®c')y is for any v x 1 vector ¢ the BLUE of ¢'T 4+ ¢'1, .. From the definition
of the vector y in (3.1), the estimator can be written as

b
T+ L) =) ya),
h=1

where Y5 = [Yn1,...,Yno]’, for A =1,...,b, which is the same as (2.9) if ¢/1, = 0. Since
the result holds for any ¢, it follows that the BLUE exists also directly for the vector

T+ 1,4, in the form
b

T:‘\]-v.u.. =t Z Yh-
h=1

So, it can be concluded that the average true response to any treatment is best lin-
early and unbiasedly estimated by the corresponding observed mean response, taken
over the b units to which the treatment has been applied according to the complete
randomized block design, provided that the randomization is performed indepen-
dently not only within each block but also between the blocks. Due to this double
randomization, the covariance matrix of y is modified from (2.3) to (3.3), and hence
the equality (2.8) is not required any more.

It should be mentioned that the model (3.1) is a particular case of that used
by Rao (1959) for incomplete block experiments, and that the estimation results
presented here are in full agreement with the more general results given by Kala
(1991) and by Califiski and Kageyama (1991, 1996).
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4, Discussion on Kaiser’s result

In the paper by Kaiser (1989) the known result given in Section 2 of the present
paper, under (ii), is accompanied by the following statement. ”If (2.4) is constant for
all i then (2.9) is best among unbiased estimators of the form w'y with w (being) a
vector of fized constants”. Then, however, it is argued that: ”In a randomized block
design (...) the data is not only the vector of responses, y, it is also known which units
received each treatment”. Because of this, it is claimed (Kaiser, 1989, p. 65) that
the search for the best estimator should be made "among unbiased estimators, linear
in y, but where the coefficient of y;; may depend on the randomization”. By such
extension of the class of estimators a theorem (Theorem 1) is proved, which exhibits
an estimator that is unbiased, linear (in the above sense) and has zero variance at any
preselected values of the parameters. From this theorem it is concluded that (2.9)
cannot be the BLUE of a contrast cr, even if the condition (2.8) is satisfied.

To see whether this conclusion is justified, let the estimator used in that theorem
be written in the notation of the present paper, i.e. as

e =cT— b (1, ®c)p,p0,y /(b1 70 + 1, 10), (4.1)

where p® and 7° are some preselected arbitrary vectors (of order bv x 1 and v x 1,
respectively), and c defines a contrast, i.e. ¢/1, =0, for which ¢/7 is as in (2.9). In
fact, under the model (2.1), the estimator (4.1) is unbiased for ¢/r. Also, at u = p°
and T = 7° the estimator becomes equal to ¢'7%= c¢'7, and thus has zero variance.
But can it be called a linear estimator in the sense used in the general Gauss-Markov
theorem? To answer this question write the estimator (4.1), equivalently, as

T =01 ® )L — (01,70 + 14, 1°) 1o, 1014, ]y,

i.e. in the form w'y, to note that the vector w here is not of (known) constant
coefficients. In fact all of them are functions of the 6fk’s and so are random variables.
Therefore, the estimator ¢/t cannot be named linear in the usual sense (see, e.g.,
Zyskind, 1975, Section 3; Harville, 1976, Section 2), and so cannot compete with or
in the class of linear unbiased estimators of c'T.

Thus, Theorem 1 of Kaiser (1989) does not show that E;, defined in (2.9), is
not the BLUE of the contrast ¢’r under the model (2.1). Also, it cannot be used
as an argument for the nonexistence of the BLUE of any contrast, either under the
randomization model (2.1) or under that in (3.1), if the notion of BLUE is to be
understood in the sense used in the general Gauss-Markov theorem.

Furthermore, in the case of a randomized experiment it does not seem appropriate
to demand an extension of the linear estimation under a randomization model by
using estimators linear in y but with coefficients depending on the randomization.
Once the randomization has been applied to the units of the experiment and the
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treatments have been assigned to the units accordingly, the knowledge of these facts
is to be included into the model, by incorporating it in the appropriate permutation
matrix, as indicated in Sections 2 and 3 (see also Zyskind, 1975, Section 2). Then it
is sufficient to base the analysis on the derived linear model directly, since, as distinct
from finite population sampling, no further randomization of the observed responses
is needed for estimating the linear parametric functions in the best linear unbiased
way,

5. Appendix

THEOREM (Zyskind, 1967). Under the assumptions E(y) = X8 and Couy) =V,
a known linear function w'y is the best linear unbiased estimator (BLUE) of its
expectation, w'Xp3, if and only if the condition (I—Px)Vw =0 holds, where Px
denotes the orthogonal projector on C(X), the column space of X, i.e., if and only if
the vector Vw belongs to C(X).

Proof. Let u'y be any known linear function different from w'y but such that
E(u'y) = w'Xg for all 8. Then u'y = w'y + (u'y — w'y) = w'y + f'y = (w+1)y,
where f = u — w is such that f'X = 0, i.e., that f = (I— P )a for some nonzero vec-
tor a [which means that f €C+(X), the orthogonal complement of C(X)]. Hence,
Var(u'y) = (w + ) V(w + f) = W' Vw+2f'Vw + £'VE. This shows that Var(u'y) <
w'Vw if and only if 2f'Vw + f'Vf < 0, and this inequality holds for any vector
f such that either f'Vf=0 and f'Vw <0, or f'Vf >0 and f'Vw/f'Vf < —1/2,
unless f'Vw = 0. But the latter equality holds for any f €CH(X) if and only if
(I—Px)Vw = 0. This proves the necessity of the condition. To see its sufficiency,
note that if it holds, then Var(u'y) > Var(w'y) for any vector f = u — w eCcH(X),
the equality holding if and only if (in addition) f'Vf =0. However, the latter holds
(together with f'Vw =0) if and only if either u = w or u'Vw/w'Vw = u'Vw/u'Vu
=1, Le. the correlation between u'y and w'y is equal to 1, which means that these
estimators are "almost surely” identical. O

This proof is a modified version of that given originally by Zyskind (1967, The-
orem 3). Also note that the theorem follows from a known more general result (see
Rao, 1973, Section 5a.2).
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O istnieniu najlepszych liniowych estymatoréw nieobciazonych w modelu
randomizacyjnym dla ukladu blokéw losowanych

STRESZCZENIE

W pracy rozwaza sie na nowo sprawe istnienia najlepszych liniowych estymatoréw
nieobcigzonych w modelu randomizacyjnym, w zwiazku z zakwestionowaniem tego
istnienia przez Kaisera (1989). Pokazuje sie, jak dwa rézne modele randomizacyjne
implikuja istnienie, przy pewnych warunkach, najlepszych estymatoréw liniowych
nieobciazonych dla zwykle interesujacych liniowych funkcji parametrycznych. Zwraca
si¢ uwage na role randomizacji podwdjnej, wewnatrz i migdzy blokami. W koficu,
wskazuje si¢ na przyczyne negatywnego wniosku, do ktérego doszedt Kaiser.

SLOWA KLUCZOWE: najlepszy liniowy estymator nieobciazony, modele randomiza-
cyjne, uklad blokéw losowanych.
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Comments on T. Calinski’s paper

Radoslaw Kala!, Department of Mathematical and Statistical Meihods, Agriculture
University of Poznari, Poland

First I would like to express my thanks to Prof. Califiski for focusing our at-
tention on the paper by Lee Kaiser (1989). This paper is really controversial. It
was published in JSPI, a journal of high quality, and was recommended by Oscar
Kempthorne, probably the first author who fully elaborated a model taking into ac-
count the randomization processes. On the other hand, this paper causes certain
problems presented on today’s session.

It is a pity that Lee Kaiser is not among us, since his point would be most
interesting. Anyway, I have spent several hours studying the paper and searching for
the seeds of the controversy. As a resuit I would like to present the following remarks.

Modeis. Adopting Kaiser’s notation we can write the randomization model in
the form

y = AT+ p.u, (1)
where y = (Y11, -, Y1vs - Yb1, - Ybu)’ 1S @ vector of bv observations, A = (1, @ L),
7 = (T1,..., o}’ is a vector of treatment effects, P, is a permutation matrix correspond-

ing to the randomization process within blocks, while gt = (f11, .cvy 10y -eey b1y -y Hbw )’
is a vector of unit effects. The usual linear model corresponding to a block design can
be expressed as

y=AT+ DS +e, (2)

where A and 7 are as in (1), D = (I, ® 1,,), 8 = (By,-.-, ) is a vector of block
effects, while e is a vector of random errors.

Comparing the models (1) and (2} Kaiser claims (p.64, bottom) that a funda-
mental difference between these two models is that in the randomization model the
data includes p,.. What it means, is difficult to guess.

Let us assume that p, is a fixed matrix reflecting the result of randomization
performed in the experiment. This interpretation corresponds to Kaiser’s statement
on p. 67: In the usual linear model the data is the vector of responses while in the
randomization model the data also includes which treatment was applied to each unit.
In such a case the randomization model is highly overparameterized. It contains v
parameters for treatment effects and N = bv parameters for the unit effects, where
b is the number of blocks. Since we have only N responses, the estimation subspace
coincides with the space of observations, and hence the model has no statistical sense.

So, let us assume that p. is a random matrix reflecting the randomization pro-
cess. In consequence, the expectation of y in both models has exactly the same

! Presented after the lecture at the XXXVTI Session of the Polish Bicinetric Society,
Poznan, Febru~ry 2-3, 1996
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representation. It means that not only the estimation subspaces in both models are
the same, but also the bases for these subspaces are the same. The difference between
models (1) and (2) is shifted to the dispersion matrix of y, which is a point discussed
by Caliriski in details. Note, that in this case the phrase: the data includes p,, means
only that during the course of the experiment some randomization was performed.

It should be observed that even if p, is a random matrix then the model (1) has
more parameters than the model (2). In the former model we have v + b fixed effects
and a separate variance component for each block, while in the latter model we have
v+b fixed effects and only one error variance. Of course, the larger number of unknown
variance components causes problems in estimation. They have been precisely shown
by Califiski. Note, however, that the process of randomization has reduced the set
of parameters from the initial number v + N(N = bv) to v + 2b. In my opinion this
reduction of parameters is the main profit resulting from the randomization. That
this operation is useful, has been also demonstrated today, particularly when showing
that the randomization of blocks, in addition to randomization within blocks, reduces
the number of variance components from b to 2. In result, more functions of fixed
parameters admit the BLUE.

Estimation procedure. The inclusion of the matrix p, to the data set, pro-
posed by Kaiser, results in a new class of estimators. They are linear in y, but the
coefficients of observations can be dependent on p,.. If p, is fixed, the estimator de-
veloped by Kaiser in his Theorem 1 is operational, in the sense that it is possible to
preselect the vectors 70 and p® such that y = A% + p,1°. But it is not unbiased.
If p, is a random matrix then Kaiser’s estimator is unbiased, but not operational, as
is admitted by the author in his remark after Theorem 1.

Note, moreover, that if we allow to extend the class of estimators by adding
to the usual class the nonoperational procedures as well as functions with random
coefficients, then we can formulate more general theorem.

Let {y, X8, 0?1} be a simple linear model, let § be any random variable, inde-
pendent on y, and with zero expectation, and let A be an arbitrary mairiz. Then the
estimator

B =(X'X)"'X'y + 5A(y — X8°) 3)
is (i) linear in 'y, (ii) unbiased for B, and (iii) B = B° if y = X°.

The estimation procedure following from (3) belongs to the class of randomized
decisions, and formally is correct. But it is useless. The probability of the event that
¥ belongs to the estimation space, i.e. that y = Xﬁo, is zero. Thus we can say that
the estimator (3) can improve the result of estimation in linear models only if the
experimenter co-operates with a perfect prophet.

Randomization and finite population inference. Kaiser has emphasized, in
his Section 5, that the randomization model is similar to a finite population sampling
model, since in both models there are more data than the vector of responses and there
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are more parameters than responses. However, if we look at the paper by Godambe
(1955), referred to by Kaiser, then we see much more dissimilarities than similarities.
To be precise, recall from Godambe (1955) the main problem of sampling from a finite
population.

Let Y = {yx, A=1,...,N} be a set of N individuals characterized by the value of
some variable y. The experimenter is interested in estimating the total T = y;+...4+-yn
by making 7 successive random drawings from Y. Observe that if n = N, i.e. the
sampling is exhaustive, the problem does not exist. It is the first dissimilarity, since
the randomization process adopted by Kaiser takes into account all units. The second
difference is contained in the formulation of the problem. In the randomization model
the knowledge of individual unit effects is more interesting, than the knowledge of
their sum T'. The third dissimilarity follows from the method used. When sampling
from a finite population, the values yi,...,yn are considered as fixed numbers and
the experimenter is searching for the sampling design leading to a sample s, of n
elements (n << N) that is most convenient for inference about 7. The permissible
designs cover any scheme of sampling: stratified and unstratified, with and without
replacement, independent and dependent. In result, the estimator, linear in s,, in
its most general form has the coefficients determined by the sampling scheme. So, in
the finite population sampling model the estimator can have random coefficients in
a natural way. It should be stressed that such estimators are operational provided
being not dependent on any preselected value of unknowns,

Thus there are more dissimilarities than similarities between randomization mod-
els and finite population sampling models. It does not mean, however, that there is
no common base. This is explained in an approach to modelling the experiments
presented in a sequence of papers by Kala (1989, 1990, 1991).
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roshima University, Japan

" »

The basic principles of experimental design, ”replication”, "randomization” and
"local control”, were formulated by Fisher (1925, 1926). Beside the replication and
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the local control, the need for randomization was recognized as a necessary condition
for obtaining a valid estimate of error and, consequently, for a valid use of the test of
significance provided by the analysis of variance.

Block designs were originally used in agricultural experiments with the aim of al-
lowing all treatments to be compared within similar conditions. A block is a compact
set of experimental units possibly uniform in their conditions and in a number equal
to the number of treatments and, since the treatments are assigned to units within
such blocks at random, the resulting experiment is said to be designed in randomized
blocks, called the randomized block design. This is reserved solely for the classical
design composed of complete blocks, i.e. such which allows all the treatments to
be allocated in each block. Recall that the adjective "randomized” is used only for
naming the classical design of randomized blocks. When describing the randomized
block design, most of the books on design of experiment point out the necessity of
a random assignment of treatments to units within blocks. However, in formulating
mathematical models for the analysis of experimental results obtained under the ran-
domized block design, the role of randomization has not been understood in the same
way by various research theorists and practitioners.

Glance at some history. On the statistical analysis of results obtainable from
experiments conducted in block designs vast literature is available, starting from the
early works of Yates (1936). Most of the literature makes references to the so-called
intra-block analysis only. This analysis, however, does not provide full information
on treatment differences, unless the within-block homogeneity is completely achieved
by a successful choice of the experimental units and their block structure. Such ideal
situation is seldom met in practice and, therefore, a more realistic model is to be
considered as a basis for the statistical analysis of experimental data. Thus the usual
linear additivity model does not appreciably take into account the randomization im-
plemented in designing and carrying out the experiment. In deriving an appropriate
model, the randomization procedures involved in laying out the experiment should
definitely be taken into account, particularly as the main purpose of the randomiza-
tion is to allow the experimental data to be considered as observations on random
variables of certain homogeneous distributions. Several authors have tried to build
models that fully recognize the randomization techniques employed. Among the vari-
ous approaches of particular interest in this paper are two lines of development, along
which the randomization is incorporated into the model building. One originates
from Neyman (1923, 1935) and was extended by Kempthorne (1952, 1955). Most
of the references in this line can be found in White (1975) and Kempthorne (1977),
here called the intra-block randomization. Another was initiated by Nelder (1954),
under some influence of Anscombe (1948), here called the intra-block and inter-block
randomization. The essential references in this line have been given by Bailey (1981)
and by Bailey and Rowley (1987). For the randomized block design case, an essen-
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tial feature of this approach is that not only the intra-block but also the inter-block
randomization is taken into account in formulating the model.

With regard to block designs, the randomization model leads to an analytical
procedure which takes into account also the information on treatment differences
that are partially or totally confounded with block differences. After Yates (1939,
1940}, this procedure is called the recovery on inter-block information. It is presented
here for a randomized block design in Section 3 with the simple combinability of the
intra-block and inter-block information, the earlier Section 2 being related to the intra-
block analysis, according to the commonly adopted attitude today towards the theory
of block designs. The main attraction of this paper is that the results presented in
Sections 2 and 3 are in contradiction to the conclusion of Kaiser (1989) regarding the
existence of the BLUEs under a randomization model for the randomized block design.
This is discussed in Section 4 under the above mentioned two different randomization
models by showing the existence of the BLUEs of the usual linear parametric functions
of interest, under certain conditions, along with the clear understanding of the role
of the double randomization within and between blocks.

In Section 2, to compare with the Kaiser paper, the usual unit-treatment additiv-
ity and the intra-block randomization are assumed. Here the treatments are assigned
to units at random in each block, independently from block to block. It is shown
that the parametric function of the overall true response averaged over all treatments
has the BLUE, and that a parametric function through a treatment contrast has the
BLUE if and only if the unit error variances are constant for all the blocks. The last
condition is known due to Zyskind (1975).

In Section 3, in addition to the assumptions in Section 2, it is further assumed
that not only the units are randomized within the blocks but also the blocks are
independently randomized between themselves. It is shown that the average true
response to any treatment is best linearly and unbiasedly estimated by the corre-
sponding observed mean response, taken over the units (in the number of blocks)
to which the treatment has been applied according to the randomized block desigu,
under the double randomization. The estimation results here coincide with the more
general results given by Kala (1991) and by Caliriski and Kageyama (1991, 1996).

Section 4 is a highlight of this paper on the existence of BLUEs under the setup
above. What is the validity of the definition of a class of linear estimators in the
vector of responses? This is understood differently between Kaiser (1989) and the
present author. As far as the notion of BLUE is explained in the sense used in the
general Gauss-Markov theorem, I agree with the claim by the author who points out
the contradiction to the conclusion of Kaiser (1989). The statements described in the
last paragraph of the paper are also instructive.

It is an interesting paper. This type of contrary is often hard to be understood by
some theoretical researchers who have different philosophy and other understanding
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about the randomization and the model building based on it. In this sense it would be
the best if the discussion in this paper could be accompanied with some illustrations.
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John A. Nelder, Department of Mathematics, Imperial College, London, UK

What Califiski’s argument shows is that, for the randomized-block design, the
randomization argument I gave in my 1965 papers establishes an isomorphism between
the standard Gauss-Markov models based on sums of independent random effects and
those derived from the symmetric covariance structures induced by randomization.
The only difference is that in the latter it may be necessary to allow negative variance
components. The fact that it is necessary to randomize the blocks becomes obvious
once incomplete-block designs have to be modelled, but this is hidden in the particular
case of complete randomized blocks. The whole point of the randomization argument
is to justify the use of the symmetric likelihood implied by the standard model. It
is, of course, possible that the data will contradict this assumption, by showing, for
example, that the blocks are not exchangeable, or that there is a consistent trend
within blocks that should be removed and the treatment effects adjusted accordingly.
Alternatively one may seek a model for the plot effects based on spatial correlation
patterns; there is now a huge literature on this.

To me, Kaiser’s paper illustrates an attitude towards statistics that I find very
unsatisfactory. It is based purely on deductive arguments and seems to lack any
contact with the important inferential problems that exist in analysing data from
the real world. These inferential problems are not easy and cannot be solved by
purely deductive mathematical arguments. They are, however, the problems that
statisticians ought to be tackling. I hope that Califiski’s paper will show that we need
not be concerned by Kaiser’s results; there are more important things to do.
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Rosemary A. Bailey, School of Mathematical Sciences, Queen Mary and Westfield
College, London, UK

I am grateful for the opportunity to comment on Caliriski’s rebuttal of Kaiser’s
paradox. I am afraid that I disagree with both of them about whether the statistical
analyst should know which treatment was applied to which plot. Califiski seems to say
that we should always ignore this information; Kaiser says that we know it only if the
experiment has been randomized. I believe that we should always know it. When I
design an experiment in blocks (whether complete or incomplete, whether randomized
or not) I prepare a data sheet with four columns. The first column contains the block
number (7); the second contains the number (k) of the plot in that block; the third
contains the code (j) for the treatment applied to that plot, which is the unique j
such that 6{,6 = 1; and the fourth contains the response.

If the second column is missing when the data arrive, I ask the experimenter why.
It may be that the second column should simply consist of 1,...,v in order b times, but
I need to verify this, so that I can scan the data for spatial patterns caused by, say,
a patch of disease in the crop or rain starting part-way through the harvest. If the
second column is missing and the third column has the same order in every block then
I am suspicious. This may mean that the experiment was not randomized (this affects
the conclusions that I draw from the analysis). On the other hand, it may be that the
experiment was randomized but the experimenter has written the data in treatment
order in each block in the mistaken belief that this will help me. Now there are three
potential problems: perhaps the experimenter harvested the plots in treatment order,
not in field order, thus making the experiment systematic and destroying the blocking
system; perhaps the experimenter has done everything in the correct order but made
mistakes copying the data to a different order on the data sheet; and any information
on spatial patterns has been lost.

In short, in practical terms it is nonsense to expect the statistician to be ignorant
of which plot the datum came from. For the mathematical theory, it is impossible
to go beyond very simple structures (consider a Latin square, for example) while
using a hybrid notation like y;;, where 7 is part of the plot information and j is the
treatment information. The response we are discussing is the one on plot & in block
1: it should be called y;z. In my own development of randomization theory (Bailey,
1981, 1991) I always label the responses by the plots. The root of Kaiser’s paradox
is his inappropriate labelling of the responses.

A second problem with Kaiser’s approach to randomization, which he inherits
from Kempthorne and which Califiski mimics, is the assumption that the u;z are
constants and so ), " ; Yij Is constant for any given set of treatments. Again, this is
nonsense in practical terms. The randomness in the assumed response is our modelling
of the non-repeatability of an experiment. For example, suppose that the whole of
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block 1 is low-lying, on clay soil, while block 7 is higher and better drained. In a wet
year p11 and pqo will probably be lower that p7; if the response is yield; in a dry
year the opposite will happen. If we regard the p;;; as random variables then we can
capture such variation by specifying that y;7 and p12 are more highly correlated with
each other than either is with uy7.

Even if we accept all Kaiser’s assumptions, there is still a flaw in his argument.

His estimator ¢ of 7y is
5>y —d Y > wi/e,
i i

where d=5"1Y"; iy and e = b i Ti+ 22 ) Hij- He claims that d and e are both
constants. Califiski objects because the constant d involves the random variable 61 :
he says that therefore (,b cannot be called linear. This objection vanishes once the
responses are labelled by plots.

My objection is that qz is either not unbiased or not linear. What happens when
we replace treatment 1 by a new treatment whose effect is 777 If the value of e in
qS is not changed then ¢ is biased, because 77 contributes to the value of e. On the
other hand, if e is changed to b(7{ + 3555 75) + 3; 30, pij then ¢ is not linear in
the responses. In fact, in this case ¢ in not even an estimator at all, because it is no
longer a function just of the responses and other known values.

It seems to me that Kaiser’s paradox has nothing whatever to do with random-
ization. It arises from forgetting that an estimator must not depend on the quantity
being estimated, and so it should be ignored.

However, Califiski’s exposition here certainly does contribute to our understand-
ing of randomization. It is a matter of taste whether one calculates with Kempthorne’s
indicator random-variables or with the orbits of the permutation group on pairs of
plots (cf. Bardin and Azais, 1990; Bailey, 1991): both approaches give the covari-
ance matrices in (2.3) and (3.3). In Section 3 Zyskind’s criterion is equivalent to
w belonging to the treatment space, no matter what the values of 0123 and 0[2, are;
it is not necessary to assume that the criterion holds for all values of 0% and oZ.
Caliriski’s conclusion that simple averages are BLUEs not only of treatment contrasts
but also of the overall mean is a special case of the important result of Zyskind (1967)
and Kruskal (1968) that all ordinary-least-squares estimators are BLUEs if Px com-
mutes with V for all values of the unknown parameters in V. Designs satisfying this
condition are precisely those which I (and many others) call orthogonal.

I disagree slightly with Caliriski in Section 2. It is well known that if two un-
biased estimators of the same quantity have different variances then the best linear
combination of them is weighted inversely to those variances. So I do not think that
b~1(1, ® ¢')y can be a candidate for a BLUE. Suppose that w'y is a BLUE, and put
2y = org, ;Wi;. Then Zyskind’s criterion shows that z is the sum of a blocks vector and
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a treatments vector, so that there are constants g; and h; such that w;; = g;+h;/ arU i
Taking g; = (bv)~! and h; = 0 gives the BLUE of 7. +._; taking 3, g; = 0 and h; =0
gives the BLUE of the block contrast v )", g;p;.; while taking g; = 0 and 3. ihi =0

gives the BLUE of (E (02,71 (Z hj TJ). Thus, in general, BLUEs exist only if
the ratios 0(2]11 R UU’ p are known. This is analogous to the result for the existence
of BLUES in non-orthogonal designed experiments with two or more strata (Houtman
and Speed, 1983).

The clear discussion in Section 2 and 3 exposes much of the common inconsistent
thinking about randomization and block designs. If there is no inter-block random-
ization then there are no BLUEs of treatment contrasts and there are no estimators
of the variances of the BLUEs of block contrasts. Why, then, do so few people per-
form inter-block randomization ? If the blocks are complete then such randomization
does not enlarge the class of possible layouts for experiments so there is no practical
need for such randomization even though the theory assumes it. An unfortunate side
effect is that many experimenters think in terms of randomization of treatments, not
randomization of plots: when faced with a resolvable incomplete-block design they
may either ruin the design by randomizing treatments separately in each replicate or
omit the necessary inter-block randomization.

If inter-block randomization is performed then Section 3 shows that there are
BLUEs of treatment effects. It also shows unequivocally that blocks are random
effects. Why then do so many people analyse data from randomized complete-block
designs as if the block effects were fixed and the intra-block variances constant ?
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Lee Kaiser, Statistics Department, Pharmaceutical Division, Bayer Corporation,
West Haven, C'T, USA

I am grateful for the opportunity to comment on the paper by T. Caliriski. I will
use the notation in my JSPI paper. Califiski and I have shown the following results
for the estimation of a contrast Y ¢;7; :

1. )" ¢;g; is minimum variance unbiased for 3 ¢;7; in the class of estimators a'y
when variability among units within blocks is constant across blocks.
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2. 3 c¢;g; is minimum variance unbiased for Y ¢;7; in the class of estimators
a'y, when block labels are randomized and subsequently ignored.

3. > ¢;7; is not minimum variance unbiased for Y~ ¢;7; in the class of estimators
aly, i.e., where the coefficient of a response value can depend on the randomization.

4. No minimum variance unbiased estimator exists for 3 c;7;.

5. 3 c;¥; is admissible as an estimator of }_ ¢;7; in the class of estimators aly.

I do not dispute items 1 and 2 and T. Califiski does not dispute items 3, 4 and
5. The sole question is whether an estimator of the form aly is ”linear”. It is clearly
linear in y as I pointed out in my paper. I leave it to the reader to make his own
decision. If he decides that aly is a linear estimator, then item 3 implies that Y, ¢;¥;
is not a BLUE.

Rejoinder

Tadeusz Calinski

I would like to thank all who took part in the discussion for their interesting and
helpful comments.

In Prof. Kala’s comments the important problem of including the permutation
matrix p, to the data set has been clarified. His theorem concerning the estimator
3, in formula (3), clearly reveals the consequences of allowing the class of unbiased
linear estimators to be extended by including functions of observations with random
coefficients, as proposed by Kaiser (1989). I am also grateful to Radostaw Kala for
commenting on the inferential differences between randomization models and finite
population sampling models, a point to which I have not paid enough attention in my
paper.

Prof. Kageyama’s extensive comments throw some light on the historical back-
ground of the problem of randomization in the design and analysis of experiments
in randomized blocks. His comments apply not only to the complete block design,
considered in the present paper, but also to the general block design, where the re-
covery of inter-block information is an essential issue. The practical relevance of the
randomization model in this general case is discussed more thoroughly in a joint pa-
per, just published (Caliriski and Kageyama, 1996, Section 2.2). The problem of the
existence of BLUEs under the randomization model for the general block design has
already been considered in an earlier joint paper (Caliniski and Kageyama, 1991, Sec-
tion 2.2). The general existence conditions obtained there coincide with those given
by Kala (1991, Theorem 3). The conditions considered in the present paper are spe-
cial cases of those. In all these papers the same approach is adopted, in which the
relevant permutation matrix is taken into account in deriving the model. Unlike in
Kaiser’s (1989) approach, however, linear unbiased estimators are understood there
in the sense used in the general Gauss-Markov theorem.



22 T. Caliriski

I am very glad that Prof. Nelder has been so kind to comment on my present
paper. Much of the work mentioned above has been stimulated by his early papers
(Nelder, 1954, 1965a,b) and, therefore, his opinion is of great value for this research.
I fully agree with his comments, and particularly I am pleased with his statement
that the necessity of randomizing the blocks so obvious for incomplete-block designs
is hidden in the particular case of complete randomized blocks. In practice this causes
sometimes misunderstandings at the stage of laying out the experiment. I hope that
the two figures included in the present paper make the point clear. Certainly I agree
that there are also many other important problems related to block designs that call
for considerations.

Similarly, I appreciate very much the comments made by Prof. Rosemary Bailey,
which I regard not only as extremely interesting from the theoretical and practical
point of view, but also as very helpful in clarifying the main points of the contro-
versy. Again, as in the case of John Nelder’s comments, I am particularly grateful
for her comments upon the necessity of inter-block randomization. I wish I could say
that nobody analyses the experimental data according to the unrealistic assumptions
pointed out in her last interrogative sentence.

As to Prof. Bailey’s disagreements with some extracts from my text, it seems
that they result mainly from misunderstanding of what I wanted to say. I must then
apologize for being not sufficiently clear in my writing. Let me, therefore, explain
my position. First of all, there was not my intention to suggest that we should
always ignore the information on which treatment was applied to which plot. When
writing (at the end of Section 4) that the knowledge of these facts is to be included
into the model I did not want to suggest that the information on the assignment of
treatments to units is to be forgotten at the stage of the analysis. I could hardly
imagine an educated experimenter who would not record the experimental data in
the manner described by Rosemary Bailey in her comments, whether the analysis
had to be based on a randomization or any other model. Secondly, it seemed to me
justified to regard in the considered model the quantities u;3 as constants, at least so
long as one wants to infer from that particular single experiment. Such assumption
on p;; has been made not only by Kaiser (and consequently in my discussion with
him) but also by Nelder (1954, p. 544) and by Bailey (1981, p. 215). Certainly, if the
experiment were to be analysed within a series of experiments repeated in space (an
experimental area) or/and in time (seasons), then p;z would have to be regarded as a
random variable. Then, however (as rightly noticed by Bailey, 1981), a more general
theory would emerge, here unnecessarily complicating the discussion. Thirdly, in my
reference to the properties of Kaiser’s estimator q~5, i.e. estimator (4.1) in my paper, I
took for granted that g = p® and 7 = 70, and I considered, following his approach,
the permutation matrix p, as random. Certainly, if p, were to be considered as a
realization of that matrix, my objection to call % linear would vanish. But then the



On the ezistence of BLUES for the randomized block design 23

estimator would not remain unbiased. Finally, when considering 5~1(1; ® c')y as a
candidate for a BLUE, 1 was referring to the usual assumed linear model. Certainly,
as shown, it is not a good candidate under the randomization model (2.1), unless the
variances (2.4) are constant over all blocks. I fully agree that, in general, we would
have a right candidate for a BLUE if we knew the ratios among those variances, but
such knowledge is usually not available in practice.

The contribution to the discussion made by Dr Kaiser is of particular value. He
rightly draws attention to five statements related to the problem under discussion,
and then reduces the controversy to the question whether an estimator of the form
aly is "linear”, if the coefficient vector a, can depend on the randomization. He
concludes that if we agree that this estimator is linear, then his statement in item
3 implies that the estimator considered in the discussed paper is not a BLUE. My
answer is as follows:

(1) The function aly is formally linear, but in a broader sense than it is under-
stood in the estimation theory based on the general Gauss-Markov theorem in which
the term BLUE is used.

(2) There is no justification for regarding the estimators considered in the present
paper as being of the form aly, with a, depending on the randomization. This has
been pointed out at the end of Section 4 of my paper, and now is fully clarified by
the exhaustive comments made by Rosemary Bailey and Radostaw Kala.



